TP

Energia dos alimentos

Doseamento de açúcares solúveis: Brix, métodos do ácido 3,5-dinitrosalicílico (DNS) e do benzenediol (Resorcinol).

Curva ou reta de calibração?

TP

ENERGIA DE ALIMENTOS

1. Caloria

Caloria (cal) é o calor necessário para elevar a temperatura de 1 g de água em 1ºC.

Quantidade de energia que o alimento fornece ao organismo, considerando que é toda aproveitada.

Joule (J), a unidade do SI.

$$1 \text{ cal} = 4, 18 \text{ J}$$

Hidratos de carbono = 4 kcal/ g

Proteínas = 5,2 Kcal/g

Lípidos = 9,4 kcal /g

$$Q = m c \Delta t$$

Onde:

Q = calor recebido pela água e cedido pelo alimento;

m = massa da água contida no calorímetro;

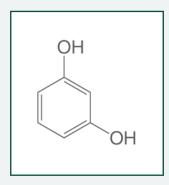
c = calor específico da água (1 cal/g . ºC);

 Δt = variação da temperatura da água ($t_{final} - t_{inicial}$).

Fig. 1 Calorímetro ou bomba de combustão

TP

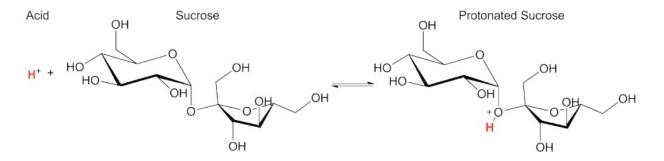
PROCEDIMENTO


1. Determinação do teor em sólidos solúveis (ºBrix)

- ✓ Calibrar o refractómetro com água destilada.
- ✓ Limpar com papel absorvente.
- ✓ Adicionar 0,2 mL de amostra para leitura do ºBrix, em triplicado.
- ✓ Lavar a célula de leitura com água destilada.
- ✓ Calcular a % de açúcares solúveis por 100 mL de refrigerante, assumindo que a refracção da luz é devida essencialmente aos açúcares solúveis.

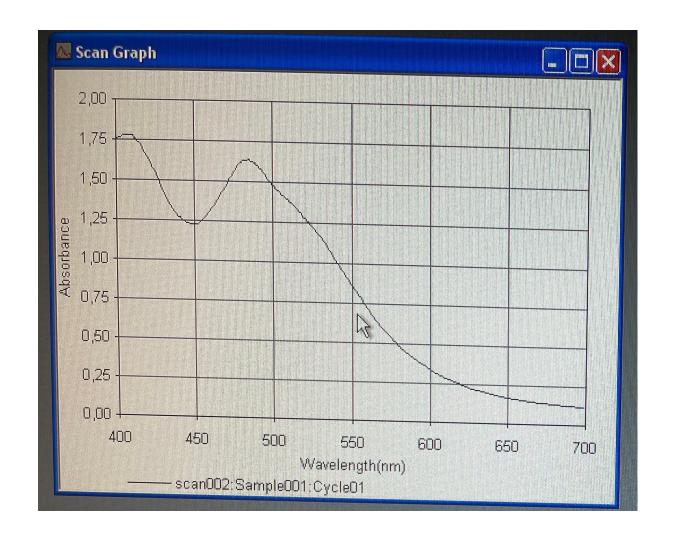
Se a amostra tiver um total de sólidos solúveis (TSS) de 16 ºBrix, qual a sua concentração em açúcares solúveis?

TP


C₆H₄(OH)₂

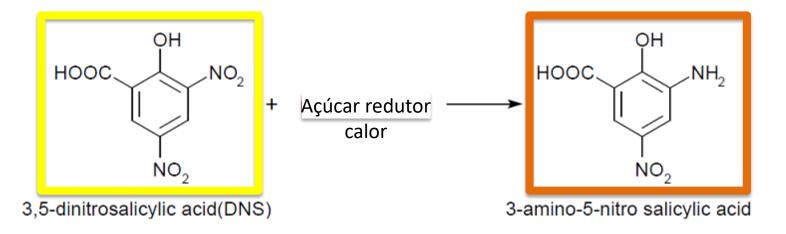
1,3-benzenediol

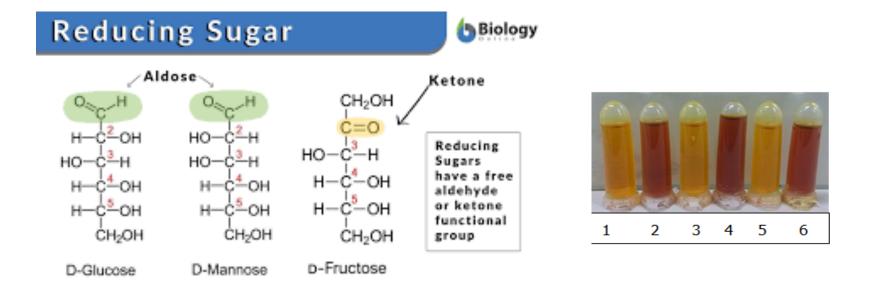
(resorcinol)


2. Doseamento de sacarose pelo método do resorcinol (benzenediol)

2.1 Fundamento do método

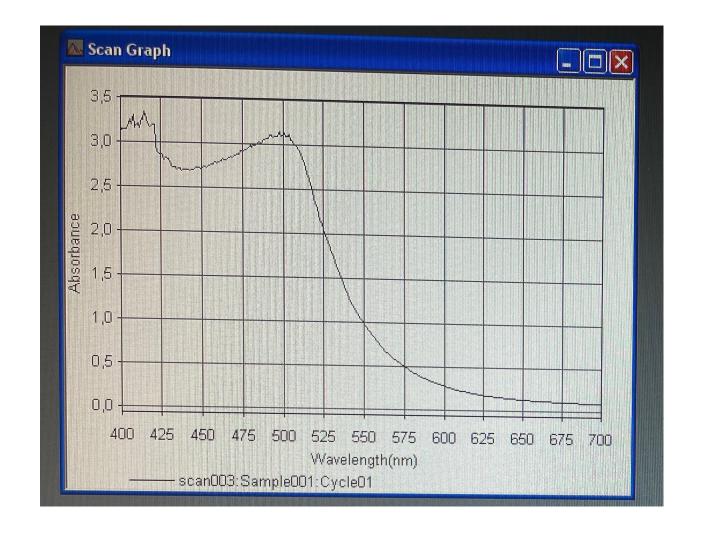
TP


Espectro de absorção do Resorcinol após reação com sacarose



TP

3. Doseamento dos açúcares redutores pelo método do DNS (ácido-3,5-dinitrosalicílico)


3.1. Fundamento do método

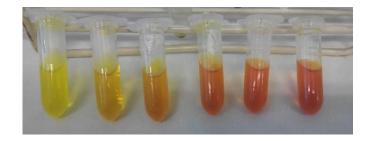
TP

Espectro de absorção do DNS após reação com açúcares redutores

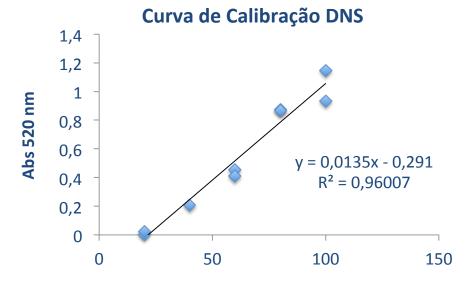
TP

3. Doseamento dos açúcares redutores pelo método do DNS (ácido-3,5-dinitrosalicílico)

3.2. Procedimento


Nota: Utilize 0,1 mL de amostra e 1 mL de reagente de DNS, quer para as amostras desconhecidas quer para amostra com concentração conhecida (curva de calibração).

A amostra desconhecida terá de ser diluída? Como saber isso?


- ✓ Preparar simultaneamente uma curva de calibração adequada, a partir de uma solução de glucose com uma concentração conhecida (1 ou 2 mg mL⁻¹).
- ✓ Adicionar 1mL de DNS a todas as amostras.
- ✓ Aquecer a 100°C durante 3 minutos.
- ✓ Arrefecer rapidamente, em gelo, até que a solução esteja à temperatura ambiente.
- ✓ Transferir para cuvetes de 1,5 mL.
- ✓ Ler a absorvância a 520 nm, fazendo previamente o branco de leitura.
- ✓ Determinar o conteúdo de glucose + frutose em equivalentes de glucose existentes em 0,1 mL de refrigerante, recorrendo à curva de calibração realizada (figura 1).

TP

- 3. Doseamento dos açúcares redutores pelo método do DNS (ácido-3,5-dinitrosalicílico) (continuação)
- 3. 3. Exemplo de curva de calibração

Glucose	H ₂ O	[Glucose]	Abs
1 mg/mL		μg/100 μL amostra	520 nm
(μL)	(μ L)		
0	100	0	
0	100	0	
20	80	20	0,004
20	80	20	0,025
40	60	40	0,208
60	40	60	0,454
60	40	60	0,41
80	20	80	0,875
80	20	80	0,867
100	0	100	0,934
100	0	100	1,145

[Glucose], μg /0,1mL amostra

Fig. 2. Exemplo de curva de calibração obtida pelo método do ácido- 3,5- dinitrosalicílico

TP

Problema

- 1. Na determinação do conteúdo em açúcares redutores de uma amostra desconhecida, diluída de 1/200, pelo método do DNS nas condições de ensaio referidas, obteve-se uma absorvância a 520 nm de 0,8.
- a) Qual o conteúdo em açúcares redutores da amostra não diluída, expressa em mg/mL?
- b) Se a amostra tivesse sido diluída e 1/400, qual o valor de absorvância que esperaria obter após o doseamento pelo método do DNS?
- c) E se a amostra tivesse sido diluída de 1/100?